3.319 \(\int \frac{x \sqrt{a+c x^2}}{d+e x} \, dx\)

Optimal. Leaf size=127 \[ \frac{\left (a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^3}+\frac{d \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^3}-\frac{\sqrt{a+c x^2} (2 d-e x)}{2 e^2} \]

[Out]

-((2*d - e*x)*Sqrt[a + c*x^2])/(2*e^2) + ((2*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(2*Sqrt[c]*e
^3) + (d*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/e^3

________________________________________________________________________________________

Rubi [A]  time = 0.105262, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {815, 844, 217, 206, 725} \[ \frac{\left (a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^3}+\frac{d \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^3}-\frac{\sqrt{a+c x^2} (2 d-e x)}{2 e^2} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

-((2*d - e*x)*Sqrt[a + c*x^2])/(2*e^2) + ((2*c*d^2 + a*e^2)*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(2*Sqrt[c]*e
^3) + (d*Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/e^3

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x \sqrt{a+c x^2}}{d+e x} \, dx &=-\frac{(2 d-e x) \sqrt{a+c x^2}}{2 e^2}+\frac{\int \frac{-a c d e+c \left (2 c d^2+a e^2\right ) x}{(d+e x) \sqrt{a+c x^2}} \, dx}{2 c e^2}\\ &=-\frac{(2 d-e x) \sqrt{a+c x^2}}{2 e^2}-\frac{\left (d \left (c d^2+a e^2\right )\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{e^3}+\frac{\left (2 c d^2+a e^2\right ) \int \frac{1}{\sqrt{a+c x^2}} \, dx}{2 e^3}\\ &=-\frac{(2 d-e x) \sqrt{a+c x^2}}{2 e^2}+\frac{\left (d \left (c d^2+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{e^3}+\frac{\left (2 c d^2+a e^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{2 e^3}\\ &=-\frac{(2 d-e x) \sqrt{a+c x^2}}{2 e^2}+\frac{\left (2 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{2 \sqrt{c} e^3}+\frac{d \sqrt{c d^2+a e^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{e^3}\\ \end{align*}

Mathematica [A]  time = 0.303128, size = 175, normalized size = 1.38 \[ \frac{\frac{a^{3/2} e^2 \sqrt{\frac{c x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{\sqrt{c} \sqrt{a+c x^2}}+2 d \sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )+2 \sqrt{c} d^2 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )-2 d e \sqrt{a+c x^2}+e^2 x \sqrt{a+c x^2}}{2 e^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[a + c*x^2])/(d + e*x),x]

[Out]

(-2*d*e*Sqrt[a + c*x^2] + e^2*x*Sqrt[a + c*x^2] + (a^(3/2)*e^2*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]
])/(Sqrt[c]*Sqrt[a + c*x^2]) + 2*Sqrt[c]*d^2*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] + 2*d*Sqrt[c*d^2 + a*e^2]*Ar
cTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(2*e^3)

________________________________________________________________________________________

Maple [B]  time = 0.24, size = 423, normalized size = 3.3 \begin{align*}{\frac{x}{2\,e}\sqrt{c{x}^{2}+a}}+{\frac{a}{2\,e}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}-{\frac{d}{{e}^{2}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}+{\frac{{d}^{2}}{{e}^{3}}\sqrt{c}\ln \left ({ \left ( -{\frac{cd}{e}}+ \left ({\frac{d}{e}}+x \right ) c \right ){\frac{1}{\sqrt{c}}}}+\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) }+{\frac{ad}{{e}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{c{d}^{3}}{{e}^{4}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^2+a)^(1/2)/(e*x+d),x)

[Out]

1/2/e*x*(c*x^2+a)^(1/2)+1/2/e*a/c^(1/2)*ln(x*c^(1/2)+(c*x^2+a)^(1/2))-d/e^2*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^
2+c*d^2)/e^2)^(1/2)+d^2/e^3*c^(1/2)*ln((-c*d/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e
^2)^(1/2))+d/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)
*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))*a+d^3/e^4/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*
e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/
2))/(d/e+x))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 3.46924, size = 1507, normalized size = 11.87 \begin{align*} \left [\frac{2 \, \sqrt{c d^{2} + a e^{2}} c d \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) +{\left (2 \, c d^{2} + a e^{2}\right )} \sqrt{c} \log \left (-2 \, c x^{2} - 2 \, \sqrt{c x^{2} + a} \sqrt{c} x - a\right ) + 2 \,{\left (c e^{2} x - 2 \, c d e\right )} \sqrt{c x^{2} + a}}{4 \, c e^{3}}, \frac{4 \, \sqrt{-c d^{2} - a e^{2}} c d \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) +{\left (2 \, c d^{2} + a e^{2}\right )} \sqrt{c} \log \left (-2 \, c x^{2} - 2 \, \sqrt{c x^{2} + a} \sqrt{c} x - a\right ) + 2 \,{\left (c e^{2} x - 2 \, c d e\right )} \sqrt{c x^{2} + a}}{4 \, c e^{3}}, \frac{\sqrt{c d^{2} + a e^{2}} c d \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} + 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) -{\left (2 \, c d^{2} + a e^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-c} x}{\sqrt{c x^{2} + a}}\right ) +{\left (c e^{2} x - 2 \, c d e\right )} \sqrt{c x^{2} + a}}{2 \, c e^{3}}, \frac{2 \, \sqrt{-c d^{2} - a e^{2}} c d \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) -{\left (2 \, c d^{2} + a e^{2}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-c} x}{\sqrt{c x^{2} + a}}\right ) +{\left (c e^{2} x - 2 \, c d e\right )} \sqrt{c x^{2} + a}}{2 \, c e^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(c*d^2 + a*e^2)*c*d*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*
d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + (2*c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x^
2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(c*e^2*x - 2*c*d*e)*sqrt(c*x^2 + a))/(c*e^3), 1/4*(4*sqrt(-c*d^2 - a*
e^2)*c*d*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^
2)) + (2*c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(c*e^2*x - 2*c*d*e)*sqrt(c
*x^2 + a))/(c*e^3), 1/2*(sqrt(c*d^2 + a*e^2)*c*d*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2
)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - (2*c*d^2 + a*e^2)*sq
rt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (c*e^2*x - 2*c*d*e)*sqrt(c*x^2 + a))/(c*e^3), 1/2*(2*sqrt(-c*d^2 -
 a*e^2)*c*d*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)
*x^2)) - (2*c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (c*e^2*x - 2*c*d*e)*sqrt(c*x^2 + a))/
(c*e^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{a + c x^{2}}}{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**2+a)**(1/2)/(e*x+d),x)

[Out]

Integral(x*sqrt(a + c*x**2)/(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.18797, size = 182, normalized size = 1.43 \begin{align*} -\frac{2 \,{\left (c d^{3} + a d e^{2}\right )} \arctan \left (-\frac{{\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} - a e^{2}}}\right ) e^{\left (-3\right )}}{\sqrt{-c d^{2} - a e^{2}}} - \frac{{\left (2 \, c^{\frac{3}{2}} d^{2} + a \sqrt{c} e^{2}\right )} e^{\left (-3\right )} \log \left ({\left | -\sqrt{c} x + \sqrt{c x^{2} + a} \right |}\right )}{2 \, c} + \frac{1}{2} \, \sqrt{c x^{2} + a}{\left (x e^{\left (-1\right )} - 2 \, d e^{\left (-2\right )}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+a)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

-2*(c*d^3 + a*d*e^2)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))*e^(-3)/sqrt(-
c*d^2 - a*e^2) - 1/2*(2*c^(3/2)*d^2 + a*sqrt(c)*e^2)*e^(-3)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/c + 1/2*sqr
t(c*x^2 + a)*(x*e^(-1) - 2*d*e^(-2))